Rui Lei | Environmental Studies | Editorial Board Member

Assoc. Prof. Dr. Rui Lei | Environmental Studies | Editorial Board Member

Associate Professor | Hubei University of Education | China

Dr. Rui Lei is a materials science researcher whose work advances the development of nanostructured materials for energy storage, photocatalysis, and electrochemical applications. With a strong academic background in ferrous metallurgy and chemistry, he has built substantial expertise in designing, synthesizing, and optimizing functional nanomaterials that address critical challenges in energy efficiency and environmental remediation. His research portfolio, supported by 393 citations across 356 documents, 30 publications, and an h-index of 11, reflects a growing impact in the scientific community. Dr. Lei has contributed significant innovations in defect-engineered carbon nanotube networks, metal oxide nanostructures, and hybrid composite systems that enhance catalytic activity, charge transport, and electrochemical stability. His work includes the development of self-supported CNT networks for binder-free supercapacitors, MnO₂ nanowire-modified graphene–carbon nanotube systems, and heterojunction-based Fe₂O₃, SnO₂, and WO₃ nanostructures tailored for high-efficiency photocatalytic degradation and solar-driven catalytic reactions. He has also advanced electrochemical detection platforms through the engineering of graphitic edge plane-rich CNT networks for sensitive ascorbic acid and uric acid analysis. Dr. Lei’s methodological contributions span hydrothermal synthesis, electrodeposition, nanointerface design, and crystal morphology tuning, enabling improvements in reaction kinetics, light absorption, charge carrier dynamics, and long-term material stability. His research activities within collaborative laboratory environments have strengthened multidisciplinary efforts toward sustainable material solutions and next-generation energy devices. His scholarly output in respected international journals demonstrates both scientific rigor and technological relevance. Recognized with multiple academic excellence scholarships, Dr. Lei has shown consistent dedication to advancing materials science and nanotechnology. His expanding body of work highlights his ability to bridge fundamental chemistry with applied engineering, positioning him as a promising and influential researcher shaping innovations in energy materials and functional nanostructures.

Profile : Scopus

Featured Publications

Lei, R., Ni, H., Chen, R., Gu, H., & Zhang, B. (2025). A highly sensitive and selective detection of ascorbic acid and uric acid based on nitrogen-doped graphitic carbon nanotube networks in situ grown on 316L stainless steel. Journal of Crystal Growth.

Lei, R., Zhang, H., Ni, H., Chen, R., Gu, H., & Dong, S. (2024). Controllable synthesis of vertically aligned WO₃ nanoplate arrays on stainless steel for improved visible-light photoelectrocatalytic activity. New Journal of Chemistry.

Lei, R., Zhang, H., Ni, H., Chen, R., Gu, H., & Dong, S. (2023). High rate-performance supercapacitors based on nitrogen-doped graphitized carbon nanotube networks in situ grown on 316L stainless steel as binder-free electrodes. New Journal of Chemistry.

Dr. Rui Lei’s work advances the development of high-performance nanomaterials that enhance clean energy technologies, environmental remediation, and sustainable electrochemical systems. His innovations in photocatalysis, sensor materials, and energy storage electrodes support scientific progress while enabling scalable solutions for industry and global sustainability.

Maofu Pang | Plastics Upcycling | Best Researcher Award

Dr. Maofu Pang | Plastics Upcycling | Best Researcher Award 

Lecturer at Ludong University, China.

Dr. Maofu Pang is a dedicated chemist whose research bridges organometallic chemistry, catalysis, and sustainable material science. His pioneering work in cobalt- and iron-catalyzed transformations, coupled with recent advances in plastic recycling and upcycling, has significantly contributed to the advancement of green chemistry and the circular economy. Through high-impact publications and innovative projects, he has emerged as a promising researcher committed to environmental sustainability and the development of efficient catalytic systems.

Proffesional Profile

Scopus 

Education

Dr. Pang’s academic journey reflects a strong foundation in chemistry and chemical engineering. He began with a bachelor’s degree in Chemical Engineering and Technology, where he developed an interest in catalysis and reaction mechanisms. He further advanced his expertise with a master’s degree in Organic Chemistry, focusing on cobalt-catalyzed hydroboration of imines and alkenes, emphasizing metal-ligand cooperation for B–H bond cleavage. His doctoral studies in Organometallic Chemistry deepened his research into cobalt-catalyzed partial transfer hydrogenation of N-heterocycles and the synthesis of heteronuclear complexes. Mentored by distinguished professors, he developed advanced skills in designing catalytic systems for selective organic transformations, laying the groundwork for his subsequent career in sustainable chemistry.

Experience

Currently serving as a faculty member at the School of Chemistry and Chemical Engineering, Ludong University, Dr. Pang’s research spans catalysis, plastic upcycling, and sustainable chemistry. His expertise lies in the design and mechanistic understanding of transition-metal complexes, particularly cobalt, iron, and manganese catalysts, applied to hydrogenation, hydroboration, and polymer degradation processes. His recent work has expanded into catalytic upcycling of polyesters and polycarbonates, transforming plastic waste into value-added chemicals through environmentally friendly methodologies. This innovative approach integrates catalysis with sustainability, directly addressing global environmental challenges.

Research Focus

Dr. Maofu Pang’s research centers on the design, development, and mechanistic study of transition-metal catalysts for sustainable chemical transformations. His work spans cobalt-, iron-, and manganese-based systems with applications in hydrogenation, hydroboration, and polymer degradation. By combining fundamental organometallic chemistry with applied catalysis, he has advanced methods for the selective transformation of N-heterocycles and olefins, while more recently pioneering catalytic strategies for the upcycling of polyesters and polycarbonates into value-added chemicals. This integrated approach addresses both academic challenges in catalytic mechanism design and practical global issues of plastic waste valorization, positioning his research at the intersection of catalysis, green chemistry, and the circular economy.

Publication Top Note

Title: Efficient Catalytic Upcycling of Polyester and Polycarbonate Plastics Using an NNN-Based Iron Catalyst
Authors: Xiaoxiao Chu, Guoren Zhou, Chongyan Ren, Xiaoshi Zhang, Maofu Pang*, Nuoyan Zhao, Hongwu Zhang
Summary: This work presents an NNN-based iron catalyst that efficiently converts polyester and polycarbonate plastics into valuable chemicals under mild, sustainable conditions. The study highlights iron as a low-cost, eco-friendly alternative for scalable plastic upcycling in the circular economy.

Conclusion

Dr. Maofu Pang exemplifies the integration of fundamental catalysis with sustainable applications. His academic background, innovative research in transition-metal catalysis, and impactful contributions to plastic recycling position him as a leading researcher in green chemistry. With his dedication to advancing circular economy principles and addressing environmental challenges, he stands as a highly deserving candidate for recognition through an award nomination.