Amarachi Paschaline Onyena | Biodiversity And Conservation | Best Researcher Award

Dr. Amarachi Paschaline Onyena | Biodiversity And Conservation | Best Researcher Award

Lecturer | Nigeria Maritime University | Nigeria

Dr. Amarachi Paschaline Onyena’s research spans marine biology and aquatic environmental science, with a core focus on water sediment quality assessment, benthic macroinvertebrate ecology, ecotoxicology, molecular characterization, and environmental risk evaluation. Her work examines how pollutants such as heavy metals, hydrocarbons, and microplastics influence aquatic ecosystems, using integrated approaches that combine biomonitoring tools, molecular techniques, and analytical assessments to understand contamination pathways, ecological stress responses, and indicators of ecosystem degradation. She contributes extensive research on mangrove ecosystem dynamics, sediment biogeochemistry, and the role of macrobenthic communities as sensitive bioindicators of environmental change. Through field investigations, experimental analyses, and systematic reviews across diverse Nigerian aquatic environments, she provides evidence-based insights for pollution mitigation, microplastic monitoring, and sustainable aquatic resource governance. Her involvement in environmental risk assessments, consultancy-based evaluations, and collaborative marine studies supports policy development for coastal sustainability and blue-economy advancement. Contributions to global platforms, including work for the United Nations World Ocean Assessment, reflect her commitment to translating scientific findings into practical frameworks for ocean governance. With 590 citations, 29 indexed documents, and an h-index of 12, her growing research impact highlights her role in advancing marine pollution science, improving environmental monitoring frameworks, and promoting evidence-based strategies for resilient coastal and marine ecosystems.

Profiles : Google Scholar | Scopus

Featured Publication

Onyena, A. P., & Sam, K. (2020). A review of the threat of oil exploitation to mangrove ecosystem: Insights from Niger Delta, Nigeria. Global Ecology and Conservation, 22, e00961.

Onyena, A. P., Aniche, D. C., Ogbolu, B. O., Rakib, M. R. J., Uddin, J., & Walker, T. R. (2021). Governance strategies for mitigating microplastic pollution in the marine environment: A review. Microplastics, 1(1), 15–46.

Rakib, M. R. J., Rahman, M. A., Onyena, A. P., Kumar, R., Sarker, A., Hossain, M. B., … (2022). A comprehensive review of heavy metal pollution in the coastal areas of Bangladesh: Abundance, bioaccumulation, health implications, and challenges. Environmental Science and Pollution Research, 29(45), 67532–67558.

Chris, D. I., Onyena, A. P., & Sam, K. (2023). Evaluation of human health and ecological risk of heavy metals in water, sediment and shellfishes in typical artisanal oil mining areas of Nigeria. Environmental Science and Pollution Research, 30(33), 80055–80069.

Sam, K., Onyena, A. P., Zabbey, N., Odoh, C. K., Nwipie, G. N., Nkeeh, D. K., Osuji, L. C., … (2023). Prospects of emerging PAH sources and remediation technologies: Insights from Africa. Environmental Science and Pollution Research, 30(14), 39451–39473.

The nominee’s work advances environmental sustainability by providing evidence-based insights into pollution risks affecting coastal and marine ecosystems. Their research supports stronger policies, healthier communities, and long-term ecosystem resilience.

Yongcun Li | Environmental Studies | Editorial Board Member

Assoc. Prof. Dr. Yongcun Li | Environmental Studies | Editorial Board Member

Researcher | Hunan University of Science and Technology | China 

Dr. Yongcun Li, an accomplished researcher at the Hunan University of Science and Technology, is a leading expert in low-carbon energy systems, heat-pump engineering, and industrial environmental purification technologies. He holds advanced degrees in mechanical and energy engineering, specializing in refrigeration, air-conditioning systems, and thermal energy processes, which form the foundation of his innovative contributions to sustainable industrial technologies. His professional experience spans the development of high-efficiency heat-pump and energy-supply equipment, oil-mist and dust-purification solutions, and integrated industrial waste-heat recovery systems, through which he has led and supported major research initiatives advancing near-zero-emission industrial operations. Dr. Li’s research focus includes multi-objective optimization of heat-pump processes, coupled purification of oil mist, dust, and VOCs, and comprehensive carbon-reduction strategies, resulting in 11 peer-reviewed publications, 86 citations, and an h-index of 4, underscoring the growing impact of his work. His contributions are further strengthened by collaborations across disciplines, active participation in scholarly communication, and involvement in professional memberships, certifications, and peer-review activities. Dr. Li’s commitment to advancing clean-energy technologies and industrial decarbonization positions him as a distinguished candidate whose work significantly supports global sustainability goals.

Profile : Scopus

Featured Publications

Li, Y. (n.d.). Multi-objective optimization of heat pump drying process using NSGA-II and response surface methodology: A case study of sludge

Dr. Li’s innovative research in low-carbon heat-pump systems, industrial purification technologies, and waste-heat recovery advances sustainable engineering solutions that reduce emissions and improve energy efficiency. His work directly supports cleaner industrial practices and contributes to global efforts toward carbon neutrality and environmental resilience.

Devlina Pramanik | Environmental Studies | Editorial Board Member

Assist. Prof. Dr. Devlina Pramanik | Environmental Studies | Editorial Board Member

Assistant Professor | Amity University Noida | India

Dr. Devlina (Das) Pramanik is an environmental biotechnologist whose research advances the development and application of functional biopolymers for pollution remediation, environmental sustainability, and emerging contaminant management. Her work focuses on creating innovative polysaccharide-based material including chitosan derivatives, plant-gum composites, xanthan-based systems, and ion-imprinted biopolymers with tailored physicochemical properties for the removal of heavy metals, dyes, pesticides, pharmaceutical residues, microplastics, and rare earth elements from complex aqueous environments. She has made significant contributions to biosorption science through her doctoral research on macrofungus-based biosorbents and has expanded these foundations to engineer cost-effective, regenerable, and scalable materials that integrate equilibrium, kinetic, and thermodynamic principles. As a Marie Skłodowska-Curie Postdoctoral Fellow, she developed advanced biopolymer-assisted coagulation and cavitation approaches that enhanced the selective capture, recovery, and upcycling of microplastics, establishing structure–function relationships that guide the design of next-generation biodegradable coagulants. Her research further spans hydrogel technologies, functional nanofibers, molecular-imprinted polymers, and hybrid biocoagulant systems optimized through statistical modelling, including Box–Behnken and response surface methodologies. Dr. Pramanik’s publications in leading international journals highlight her contributions to understanding microplastic toxicity in aquatic species, chitosan-based environmental materials, lithium recovery from spent batteries, glitter-induced bioaccumulation, and sustainable pollutant degradation strategies. She has led and collaborated on projects involving desalination, organic flocculants, biopolymer-assisted dye removal, and polymer coating materials for oil absorption. Her research leadership includes supervising postgraduate and undergraduate work on chitosan encapsulation, biosorbent grafting, polymer–clay composites, and behavioural toxicity assessments in model aquatic organisms. Through interdisciplinary collaborations spanning biotechnology, material science, and environmental chemistry, Dr. Pramanik continues to develop cutting-edge biopolymer technologies that address global challenges related to water pollution, microplastic contamination, and sustainable resource recovery, contributing extensively to the advancement of eco-innovative environmental biotechnology.

Profiles : Scopus | ORCID | Google Scholar 

Featured Publication

Pramanik, D., et al. (2022). Selective recovery of lithium from spent coin cell cathode leachates using ion-imprinted blended chitosan microfibers: Pilot scale studies provide insights on scalability. Journal of Hazardous Materials.

Ovais, M., Mukherjee, S., Pramanik, A., Das, D., Mukherjee, A., Raza, A., & Chen, C. (2020). Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment. Advanced Materials.

Das, N., Madhavan, J., Selvi, A., & Das, D. (2019). An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech, 9.

Das, D. (2019). Organic flocculation as an alternative for wastewater treatment. In Biochemical and Environmental Bioprocessing: Challenges and Developments (Chap. 10).

Sahithya, K., Das, D., & Das, N. (2017). Adsorption coupled photocatalytic degradation of dichlorvos using LaNiMnO₆ perovskite nanoparticles supported on polypropylene filter cloth and carboxymethyl cellulose microspheres. Environmental Progress & Sustainable Energy, 36(4).

Dr. Devlina (Das) Pramanik shows strong expertise in environmental biotechnology, especially biopolymer-based remediation and microplastic detoxification, supported by quality publications and interdisciplinary methods. She can further improve by increasing industry partnerships and scaling her technologies. Her future research holds promise for advanced biopolymer systems, innovative microplastic solutions, and impactful sustainability technologies.

Tanmay Sanyal | Biodiversity and Conservation | Zoology Honour Award

Assist. Prof. Dr. Tanmay Sanyal | Biodiversity and Conservation | Zoology Honour Award

Assistant Professor | Krishnagar Government College | India 

Dr. Tanmay Sanyal’s research integrates zoology, ecology, and environmental science, with a strong emphasis on Fish and Fisheries, Aquatic Toxicology, Limnology, and Biodiversity Conservation. His investigations into the bioaccumulation of heavy metals, particularly chromium, in aquatic organisms have significantly advanced understanding of the ecological and physiological effects of industrial pollutants on freshwater ecosystems. Through his studies, he has explored mechanisms of toxicity, metabolic alterations, and adaptive responses in aquatic fauna, offering critical insights into ecosystem resilience and pollution management. Beyond toxicology, his research encompasses ecological monitoring, water quality assessment, and the sustainable management of fishery resources. Dr. Sanyal’s interdisciplinary approach bridges environmental chemistry, zoology, and sustainability studies, addressing global challenges related to water pollution, biodiversity loss, and environmental health while aligning with the United Nations Sustainable Development Goals (SDGs) on clean water, life below water, and sustainable communities. He has published extensively in high-impact international journals, including Computers in Biology and Medicine, Journal of Advanced Research, and Human and Ecological Risk Assessment, along with numerous book chapters on environmental management and sustainable development. His scholarly contributions have deepened scientific understanding of aquatic ecosystems, informed environmental policy, and supported conservation efforts. Through his research, Dr. Sanyal continues to promote environmental stewardship, advocating for evidence-based strategies to mitigate pollution, enhance sustainability, and preserve aquatic biodiversity for future generations.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Hui, N., Sanyal, T., & Das, R. (2024). A brief review on solar photovoltaic: A key to sustainable development. In Book of Environmental Sustainability and Development (Chapter 8).

Singh, D., Amitabh, A., Kumar, A., Maurya, A. K., & Naveen, J. (2024). Design and performance evaluation of pyramid, hexagonal and conical forms as solar panels. In Advances in Sustainable Energy Systems (pp. xx–xx). Springer.

Sharma, H. R., Gupta, R. K., Rastogi, P., Singh, N., & Naveen, J. (2024). Design, analysis, and optimization of 2D 3-blade Savonius vertical axis wind turbine. In Advances in Sustainable Energy Systems (pp. xx–xx). Springer.

Dutta, S., Mukherjee, P., Mitra, A., Guha, B., Ganguly, B. B., & Sanyal, T. (2024). Diaphonization: Enhancing efforts toward achieving SDGs 10, 14, and 15. In Book of Environmental Sustainability and Development (Chapter 13).

Das, S. K., Sen, K., Sanyal, T., Saha, A., & Madhu, N. R. (2024). Flavonoids: A promising neuroprotectant and its salutary effects on age-related neurodegenerative disorders. In Neuroprotective Phytochemicals: Advances and Perspectives (pp. xx–xx). Springer.

Dr. Tanmay Sanyal’s research bridges environmental science, zoology, and sustainable technology, focusing on renewable energy, pollution mitigation, and aquatic ecosystem conservation. His interdisciplinary work advances sustainability, environmental resilience, and human well-being in line with the UN SDGs.

Anna Vatsanidou | Environmental Assessment | Best Academic Researcher Award

Assist. Prof. Dr. Anna Vatsanidou | Environmental Assessment | Best Academic Researcher Award

Assistant Professor at National and Kapodistrian University of Athens | Greece

Dr. Anna Vatsanidou is an Assistant Professor at the Department of Agricultural Development, Agri-Food and Natural Resources Management, National and Kapodistrian University of Athens (NKUA). She is an accomplished agriculturist with extensive expertise in precision and sustainable agriculture, environmental impact assessment, and life cycle analysis of agri-food systems. Her academic path and professional journey reflect a strong commitment to advancing agri-food sustainability and contributing to innovative solutions for global agricultural challenges.

Professional Profiles

ORCID | Google Scholar

Education

Dr. Vatsanidou holds a Master’s degree in Integrated Agricultural Production Systems and a Doctorate in Environmental Assessment from the Department of Agriculture, Crop Production and Rural Environment at the University of Thessaly. Her doctoral research laid the foundation for her specialized expertise in evaluating environmental impacts within agricultural and food production systems. During this period, she gained a deep understanding of sustainable agricultural practices, system optimization, and the application of environmental models to assess agricultural inputs and outputs. Her multidisciplinary training combines agronomy, environmental sciences, and technological innovation, equipping her with the tools to address complex challenges in modern agriculture.

Experience

Dr. Vatsanidou has developed a distinguished career spanning academia, research institutes, and both public and private organizations. She began as an agronomist in public agencies, gaining valuable experience in agricultural systems and their operational challenges. Expanding into the private sector, she focused on applied agricultural practices and project implementation. At the Benaki Phytopathological Institute, she served as project manager, coordinating multidisciplinary teams and advancing research outcomes into practical strategies. Her academic pathway includes serving as a PhD Researcher at CERTH’s Institute of Bio-Economics and Agrotechnology, specializing in environmental impact assessment. She has also collaborated as an external fellow with the Agricultural University of Athens and the University of Thessaly. Currently, she is an Assistant Professor at NKUA, teaching, mentoring, and leading projects in precision agriculture and sustainability.

Research Focus

Dr. Vatsanidou’s research is centered on the evaluation and development of precision agricultural techniques, environmental footprint analysis, and sustainable production systems. A core component of her work is the application of life cycle assessment (LCA) to evaluate environmental impacts across the agri-food chain, from primary production to processing. Her studies address key challenges in climate-smart agriculture, sustainable resource management, and environmental protection, with an emphasis on balancing productivity with ecological sustainability. She has made significant contributions to precision farming technologies for crop protection, environmental assessment of emission reduction technologies, and the integration of innovative tools such as imaging recognition and digital algorithms in agriculture. Her research supports the global transition towards agriculture 4.0 and 5.0 by incorporating digitalization, automation, and sustainable practices into farming systems.

Publication Top Notes

Title: Freshness Prediction for Apples & Lettuces
Authors: Chrysanthos Maraveas; George Kalitsios; Marianna I. Kotzabasaki; Dimitrios V. Giannopoulos; Kosmas Dimitropoulos; Anna Vatsanidou
Summary: Presents a mobile app that combines imaging recognition with advanced algorithms to predict fruit and vegetable freshness in real time. The tool helps reduce food waste and ensures better quality monitoring along the supply chain.

Title: Life Cycle Assessment of Insect vs. Conventional Feed
Authors: Anna Vatsanidou; Styliani Konstantinidi; Eleftherios Bonos; Ioannis Skoufos
Summary: Compares the environmental impact of conventional and insect-based protein feeds using life cycle assessment (LCA). Findings highlight insect-based proteins as a sustainable alternative for animal production.

Title: Biopolymer Nanopesticides for Degradation
Authors: Chrysanthos Maraveas; Giasemi K. Angeli; Anna Vatsanidou; Marianna I. Kotzabasaki
Summary: Reviews the design of biopolymer-based nanopesticides aimed at improving pesticide degradation. Emphasizes eco-friendly nanotechnology solutions to enhance crop protection while reducing environmental risks.

Title: Cybersecurity in Agriculture 4.0 & 5.0
Authors: Chrysanthos Maraveas; Muttukrishnan Rajarajan; Konstantinos G. Arvanitis; Anna Vatsanidou
Summary: Analyzes cybersecurity challenges in digital agriculture, covering precision farming and smart technologies. Proposes risk mitigation measures to protect agricultural data, devices, and infrastructures.

Title: Emission Reduction in Livestock Systems
Authors: Vasileios Anestis; Anna Vatsanidou; Thomas Bartzanas
Summary: Examines emission reduction strategies in livestock systems. Evaluates their effectiveness, environmental benefits, and potential adoption, supporting sustainable practices in animal production.

Conclusion

Dr. Anna Vatsanidou is an innovative and impactful researcher whose work bridges the fields of agriculture, environmental science, and digital technology. Her commitment to sustainability, leadership in major international projects, and contributions to both academic scholarship and practical applications mark her as an outstanding candidate for recognition. Through her teaching, research, and collaborations, she continues to advance sustainable agricultural development while shaping the next generation of agricultural scientists. Her work exemplifies excellence in addressing the pressing challenges of food security, environmental stewardship, and technological innovation in the agri-food sector.

Maofu Pang | Plastics Upcycling | Best Researcher Award

Dr. Maofu Pang | Plastics Upcycling | Best Researcher Award 

Lecturer at Ludong University, China.

Dr. Maofu Pang is a dedicated chemist whose research bridges organometallic chemistry, catalysis, and sustainable material science. His pioneering work in cobalt- and iron-catalyzed transformations, coupled with recent advances in plastic recycling and upcycling, has significantly contributed to the advancement of green chemistry and the circular economy. Through high-impact publications and innovative projects, he has emerged as a promising researcher committed to environmental sustainability and the development of efficient catalytic systems.

Proffesional Profile

Scopus 

Education

Dr. Pang’s academic journey reflects a strong foundation in chemistry and chemical engineering. He began with a bachelor’s degree in Chemical Engineering and Technology, where he developed an interest in catalysis and reaction mechanisms. He further advanced his expertise with a master’s degree in Organic Chemistry, focusing on cobalt-catalyzed hydroboration of imines and alkenes, emphasizing metal-ligand cooperation for B–H bond cleavage. His doctoral studies in Organometallic Chemistry deepened his research into cobalt-catalyzed partial transfer hydrogenation of N-heterocycles and the synthesis of heteronuclear complexes. Mentored by distinguished professors, he developed advanced skills in designing catalytic systems for selective organic transformations, laying the groundwork for his subsequent career in sustainable chemistry.

Experience

Currently serving as a faculty member at the School of Chemistry and Chemical Engineering, Ludong University, Dr. Pang’s research spans catalysis, plastic upcycling, and sustainable chemistry. His expertise lies in the design and mechanistic understanding of transition-metal complexes, particularly cobalt, iron, and manganese catalysts, applied to hydrogenation, hydroboration, and polymer degradation processes. His recent work has expanded into catalytic upcycling of polyesters and polycarbonates, transforming plastic waste into value-added chemicals through environmentally friendly methodologies. This innovative approach integrates catalysis with sustainability, directly addressing global environmental challenges.

Research Focus

Dr. Maofu Pang’s research centers on the design, development, and mechanistic study of transition-metal catalysts for sustainable chemical transformations. His work spans cobalt-, iron-, and manganese-based systems with applications in hydrogenation, hydroboration, and polymer degradation. By combining fundamental organometallic chemistry with applied catalysis, he has advanced methods for the selective transformation of N-heterocycles and olefins, while more recently pioneering catalytic strategies for the upcycling of polyesters and polycarbonates into value-added chemicals. This integrated approach addresses both academic challenges in catalytic mechanism design and practical global issues of plastic waste valorization, positioning his research at the intersection of catalysis, green chemistry, and the circular economy.

Publication Top Note

Title: Efficient Catalytic Upcycling of Polyester and Polycarbonate Plastics Using an NNN-Based Iron Catalyst
Authors: Xiaoxiao Chu, Guoren Zhou, Chongyan Ren, Xiaoshi Zhang, Maofu Pang*, Nuoyan Zhao, Hongwu Zhang
Summary: This work presents an NNN-based iron catalyst that efficiently converts polyester and polycarbonate plastics into valuable chemicals under mild, sustainable conditions. The study highlights iron as a low-cost, eco-friendly alternative for scalable plastic upcycling in the circular economy.

Conclusion

Dr. Maofu Pang exemplifies the integration of fundamental catalysis with sustainable applications. His academic background, innovative research in transition-metal catalysis, and impactful contributions to plastic recycling position him as a leading researcher in green chemistry. With his dedication to advancing circular economy principles and addressing environmental challenges, he stands as a highly deserving candidate for recognition through an award nomination.