Anna Vatsanidou | Environmental Assessment | Best Academic Researcher Award

Assist. Prof. Dr. Anna Vatsanidou | Environmental Assessment | Best Academic Researcher Award

Assistant Professor at National and Kapodistrian University of Athens | Greece

Dr. Anna Vatsanidou is an Assistant Professor at the Department of Agricultural Development, Agri-Food and Natural Resources Management, National and Kapodistrian University of Athens (NKUA). She is an accomplished agriculturist with extensive expertise in precision and sustainable agriculture, environmental impact assessment, and life cycle analysis of agri-food systems. Her academic path and professional journey reflect a strong commitment to advancing agri-food sustainability and contributing to innovative solutions for global agricultural challenges.

Professional Profiles

ORCID | Google Scholar

Education

Dr. Vatsanidou holds a Master’s degree in Integrated Agricultural Production Systems and a Doctorate in Environmental Assessment from the Department of Agriculture, Crop Production and Rural Environment at the University of Thessaly. Her doctoral research laid the foundation for her specialized expertise in evaluating environmental impacts within agricultural and food production systems. During this period, she gained a deep understanding of sustainable agricultural practices, system optimization, and the application of environmental models to assess agricultural inputs and outputs. Her multidisciplinary training combines agronomy, environmental sciences, and technological innovation, equipping her with the tools to address complex challenges in modern agriculture.

Experience

Dr. Vatsanidou has developed a distinguished career spanning academia, research institutes, and both public and private organizations. She began as an agronomist in public agencies, gaining valuable experience in agricultural systems and their operational challenges. Expanding into the private sector, she focused on applied agricultural practices and project implementation. At the Benaki Phytopathological Institute, she served as project manager, coordinating multidisciplinary teams and advancing research outcomes into practical strategies. Her academic pathway includes serving as a PhD Researcher at CERTH’s Institute of Bio-Economics and Agrotechnology, specializing in environmental impact assessment. She has also collaborated as an external fellow with the Agricultural University of Athens and the University of Thessaly. Currently, she is an Assistant Professor at NKUA, teaching, mentoring, and leading projects in precision agriculture and sustainability.

Research Focus

Dr. Vatsanidou’s research is centered on the evaluation and development of precision agricultural techniques, environmental footprint analysis, and sustainable production systems. A core component of her work is the application of life cycle assessment (LCA) to evaluate environmental impacts across the agri-food chain, from primary production to processing. Her studies address key challenges in climate-smart agriculture, sustainable resource management, and environmental protection, with an emphasis on balancing productivity with ecological sustainability. She has made significant contributions to precision farming technologies for crop protection, environmental assessment of emission reduction technologies, and the integration of innovative tools such as imaging recognition and digital algorithms in agriculture. Her research supports the global transition towards agriculture 4.0 and 5.0 by incorporating digitalization, automation, and sustainable practices into farming systems.

Publication Top Notes

Title: Freshness Prediction for Apples & Lettuces
Authors: Chrysanthos Maraveas; George Kalitsios; Marianna I. Kotzabasaki; Dimitrios V. Giannopoulos; Kosmas Dimitropoulos; Anna Vatsanidou
Summary: Presents a mobile app that combines imaging recognition with advanced algorithms to predict fruit and vegetable freshness in real time. The tool helps reduce food waste and ensures better quality monitoring along the supply chain.

Title: Life Cycle Assessment of Insect vs. Conventional Feed
Authors: Anna Vatsanidou; Styliani Konstantinidi; Eleftherios Bonos; Ioannis Skoufos
Summary: Compares the environmental impact of conventional and insect-based protein feeds using life cycle assessment (LCA). Findings highlight insect-based proteins as a sustainable alternative for animal production.

Title: Biopolymer Nanopesticides for Degradation
Authors: Chrysanthos Maraveas; Giasemi K. Angeli; Anna Vatsanidou; Marianna I. Kotzabasaki
Summary: Reviews the design of biopolymer-based nanopesticides aimed at improving pesticide degradation. Emphasizes eco-friendly nanotechnology solutions to enhance crop protection while reducing environmental risks.

Title: Cybersecurity in Agriculture 4.0 & 5.0
Authors: Chrysanthos Maraveas; Muttukrishnan Rajarajan; Konstantinos G. Arvanitis; Anna Vatsanidou
Summary: Analyzes cybersecurity challenges in digital agriculture, covering precision farming and smart technologies. Proposes risk mitigation measures to protect agricultural data, devices, and infrastructures.

Title: Emission Reduction in Livestock Systems
Authors: Vasileios Anestis; Anna Vatsanidou; Thomas Bartzanas
Summary: Examines emission reduction strategies in livestock systems. Evaluates their effectiveness, environmental benefits, and potential adoption, supporting sustainable practices in animal production.

Conclusion

Dr. Anna Vatsanidou is an innovative and impactful researcher whose work bridges the fields of agriculture, environmental science, and digital technology. Her commitment to sustainability, leadership in major international projects, and contributions to both academic scholarship and practical applications mark her as an outstanding candidate for recognition. Through her teaching, research, and collaborations, she continues to advance sustainable agricultural development while shaping the next generation of agricultural scientists. Her work exemplifies excellence in addressing the pressing challenges of food security, environmental stewardship, and technological innovation in the agri-food sector.

Maofu Pang | Plastics Upcycling | Best Researcher Award

Dr. Maofu Pang | Plastics Upcycling | Best Researcher Award 

Lecturer at Ludong University, China.

Dr. Maofu Pang is a dedicated chemist whose research bridges organometallic chemistry, catalysis, and sustainable material science. His pioneering work in cobalt- and iron-catalyzed transformations, coupled with recent advances in plastic recycling and upcycling, has significantly contributed to the advancement of green chemistry and the circular economy. Through high-impact publications and innovative projects, he has emerged as a promising researcher committed to environmental sustainability and the development of efficient catalytic systems.

Proffesional Profile

Scopus 

Education

Dr. Pang’s academic journey reflects a strong foundation in chemistry and chemical engineering. He began with a bachelor’s degree in Chemical Engineering and Technology, where he developed an interest in catalysis and reaction mechanisms. He further advanced his expertise with a master’s degree in Organic Chemistry, focusing on cobalt-catalyzed hydroboration of imines and alkenes, emphasizing metal-ligand cooperation for B–H bond cleavage. His doctoral studies in Organometallic Chemistry deepened his research into cobalt-catalyzed partial transfer hydrogenation of N-heterocycles and the synthesis of heteronuclear complexes. Mentored by distinguished professors, he developed advanced skills in designing catalytic systems for selective organic transformations, laying the groundwork for his subsequent career in sustainable chemistry.

Experience

Currently serving as a faculty member at the School of Chemistry and Chemical Engineering, Ludong University, Dr. Pang’s research spans catalysis, plastic upcycling, and sustainable chemistry. His expertise lies in the design and mechanistic understanding of transition-metal complexes, particularly cobalt, iron, and manganese catalysts, applied to hydrogenation, hydroboration, and polymer degradation processes. His recent work has expanded into catalytic upcycling of polyesters and polycarbonates, transforming plastic waste into value-added chemicals through environmentally friendly methodologies. This innovative approach integrates catalysis with sustainability, directly addressing global environmental challenges.

Research Focus

Dr. Maofu Pang’s research centers on the design, development, and mechanistic study of transition-metal catalysts for sustainable chemical transformations. His work spans cobalt-, iron-, and manganese-based systems with applications in hydrogenation, hydroboration, and polymer degradation. By combining fundamental organometallic chemistry with applied catalysis, he has advanced methods for the selective transformation of N-heterocycles and olefins, while more recently pioneering catalytic strategies for the upcycling of polyesters and polycarbonates into value-added chemicals. This integrated approach addresses both academic challenges in catalytic mechanism design and practical global issues of plastic waste valorization, positioning his research at the intersection of catalysis, green chemistry, and the circular economy.

Publication Top Note

Title: Efficient Catalytic Upcycling of Polyester and Polycarbonate Plastics Using an NNN-Based Iron Catalyst
Authors: Xiaoxiao Chu, Guoren Zhou, Chongyan Ren, Xiaoshi Zhang, Maofu Pang*, Nuoyan Zhao, Hongwu Zhang
Summary: This work presents an NNN-based iron catalyst that efficiently converts polyester and polycarbonate plastics into valuable chemicals under mild, sustainable conditions. The study highlights iron as a low-cost, eco-friendly alternative for scalable plastic upcycling in the circular economy.

Conclusion

Dr. Maofu Pang exemplifies the integration of fundamental catalysis with sustainable applications. His academic background, innovative research in transition-metal catalysis, and impactful contributions to plastic recycling position him as a leading researcher in green chemistry. With his dedication to advancing circular economy principles and addressing environmental challenges, he stands as a highly deserving candidate for recognition through an award nomination.