73 / 100 SEO Score

Assoc. Prof. Dr. Charles Sprouse III | Integral Ecology | Best Faculty Award

Doctor at Benedictine College, United States

Dr. Charles Edward Sprouse III is an accomplished academician and researcher specializing in mechanical engineering and physics. With expertise in sustainability, life cycle assessment, and integral ecology, he has significantly contributed to environmental stewardship and emissions reduction technologies. His research in low-temperature power cycles and organic Rankine cycles has gained widespread recognition, influencing academia and industry. As a dedicated educator, Dr. Sprouse has mentored 21 student research projects, some of which have won prestigious awards. His professional affiliations include ASME, ASEE, and SAE, reflecting his deep engagement with the engineering community. With 21 peer-reviewed journal publications and 46 completed research projects, he continues to advance engineering solutions for energy efficiency and environmental impact reduction. Dr. Sprouse’s commitment to integrating technology with sustainability principles makes him a leading figure in mechanical and environmental engineering research.

Professional Profiles📖

Education  🎓

Dr. Sprouse holds advanced degrees in Physics and Mechanical Engineering, equipping him with a strong interdisciplinary foundation for addressing complex engineering challenges. His academic journey includes rigorous training in thermodynamics, fluid mechanics, and sustainable energy systems. Throughout his studies, he developed expertise in waste heat recovery, emissions control, and renewable energy technologies. His research explored environmental impacts in energy applications, leading to groundbreaking innovations in organic Rankine cycles. Dr. Sprouse actively participated in academic societies, earning memberships in Pi Tau Sigma (ΠΤΣ) and Tau Beta Pi (ΤΒΠ), prestigious engineering honor societies. His education has laid the foundation for his impactful career in both academia and industry, blending theoretical knowledge with practical applications. His commitment to lifelong learning is reflected in his continuous contributions to engineering research, education, and sustainability initiatives.

Experience 🏢

With a diverse and impactful career, Dr. Sprouse has made significant contributions as a researcher, educator, and consultant. At Benedictine College, he has taught 21 engineering courses, covering fundamental and advanced topics in mechanical engineering. His mentorship of 21 student research projects has led to award-winning work in sustainability and environmental stewardship.

Dr. Sprouse’s research has focused on waste heat recovery, emissions abatement, and energy-efficient power cycles, leading to 21 journal publications and over 46 research projects. His consultancy experience spans life cycle assessment, sustainability planning, and thermofluidic system monitoring. Industry collaborations have allowed him to bridge academic research with real-world applications, particularly in solar energy, geothermal energy, and automotive emissions reduction.

His commitment to engineering education and research innovation has earned him recognition in professional societies like ASME, ASEE, and SAE. Through his experience, he continues to drive advancements in energy efficiency and environmental responsibility.

Awards & Honors 🏆

Dr. Sprouse’s excellence in research, teaching, and environmental innovation has been recognized through multiple awards and honors. He has guided two student projects that won the Dr. Wangari Maathai Discovery Awards for outstanding contributions to sustainability, environmental justice, and women’s equality.

His co-authored research on waste heat recovery using organic Rankine cycles was the most downloaded article in mechanical engineering in 2013, among approximately 20,000 eligible works. This recognition highlights the significance of his contributions to energy efficiency and emissions control.

Dr. Sprouse’s professional impact is further acknowledged through memberships in Pi Tau Sigma (ΠΤΣ), Tau Beta Pi (ΤΒΠ), ASME, ASEE, and SAE, reflecting his influence in mechanical engineering and academia. His work continues to shape sustainability-focused engineering practices, bridging research with industry innovation.

Skills💡

Dr. Sprouse possesses a diverse skill set that seamlessly integrates engineering expertise, sustainability analysis, and academic mentorship. His technical proficiency spans thermodynamics and heat transfer, with a specialization in waste heat recovery and low-temperature power cycles. He is well-versed in life cycle assessment (LCA), allowing him to evaluate the environmental impact of energy and industrial systems. His expertise in computational modeling and simulation enables him to conduct in-depth energy efficiency analyses, while his knowledge of renewable energy systems encompasses solar, geothermal, and alternative energy applications. Additionally, he is highly skilled in sustainability planning, providing consultancy on eco-friendly designs and emissions reduction strategies. Beyond his technical acumen, Dr. Sprouse excels in academic and research-oriented skills, including technical writing and publishing, with 21 peer-reviewed journal articles to his credit. He is also a dedicated mentor and educator, guiding students in research projects and engineering concepts. His industry collaborations further highlight his ability to bridge academic research with real-world applications, driving engineering solutions for a more sustainable future.

Research Focus🔬

Dr. Sprouse’s research is centered on sustainability, waste heat recovery, and energy-efficient power cycles. His expertise in low-temperature power cycles, particularly organic Rankine cycles (ORCs), has led to significant advancements in thermal pollution reduction and natural refrigerant applications.

His work in environmental impact assessment integrates life cycle analysis (LCA) to ensure long-term sustainability in renewable energy systems, deep geothermal energy, and MW-scale solar arrays. He also explores integral ecology and emissions abatement, developing technologies to minimize the environmental footprint of energy production.

A key focus of his research is automotive and industrial emissions reduction, where he has introduced an aftertreatment device that filters particulate matter while recovering heat for supplementary power generation. His findings have been widely cited and have influenced an increase in commercial ORC technology applications.

Dr. Sprouse remains committed to bridging engineering innovations with environmental responsibility, driving research that contributes to clean energy solutions.

Conclusion✅

Publications Top Notes📚

“Integral Ecology Approach to Life Cycle Assessment of Solar Arrays”

Journal: Solar Compass

Publication Date: March 2025

DOI: 10.1016/j.solcom.2024.100104

Citations: As of April 2, 2025, specific citation metrics are not available.

“Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review”

Journal: Sustainability

Publication Date: February 26, 2024

DOI: 10.3390/su16051924

Citations: As of April 2, 2025, specific citation metrics are not available.

“A Critical Survey of Environmental Content in United States Undergraduate Mechanical Engineering Curricula”

Journal: Sustainability

Publication Date: June 21, 2021

DOI: 10.3390/su13126961​​

Citations: As of April 2, 2025, specific citation metrics are not available.

“Advancing Pervious Pavements through Nomenclature, Standards, and Holistic Green Design”

Journal: Sustainability

Publication Date: September 2020

DOI: 10.3390/su12187422

Citations: As of April 2, 2025, specific citation metrics are not available.

Charles Sprouse III | Integral Ecology | Best Faculty Award

You May Also Like